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Of the many possible modes available for communicating information over
a coherent communication channel, one that is quite common is to allocate a
portion of the total transmitted power Pt to a discrete carrier for purposes of
carrier synchronization. In the case of binary phase-shift keying (BPSK) mod-
ulation, the simplest way to accomplish this is to employ a phase modulation
index β other than 90 deg. When this is done, the fraction of power allocated to
the discrete carrier becomes Pc = Pt cos2 β with the remaining fractional power
Pd = Pt sin2 β available for data detection. When using this signaling mode, one
must assure oneself that the power spectrum of the data modulation is such that
it does not interfere with the extraction of the discrete carrier by an appropriate
carrier-tracking loop such as a phase-locked loop (PLL). In other words, the dis-
crete carrier should be inserted at a point where the power spectrum of the data
modulation is minimum, preferably equal to zero. In the case of digital data, this
rules out direct modulation of the carrier with a non-return-to-zero (NRZ) data
stream whose spectrum is maximum at zero frequency, which at radio frequency
(RF) would correspond to the carrier frequency. Instead one can first modulate
the data onto a subcarrier whose frequency is selected significantly higher than
the data rate so that the sidebands of the data modulation are sufficiently re-
duced by the time they reach the carrier frequency. Alternatively, one can use
a data format such as biphase-L (Manchester coding), whose power spectrum is
identically equal to zero at zero frequency, and directly modulate the carrier.

On other occasions it might be preferable to use a coherent communication
mode where carrier synchronization is established directly from the data-bearing
signal, e.g., using a Costas loop. In this case, none of the transmitted power is
allocated to a discrete carrier, and the system is said to operate in a suppressed-
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carrier mode, which in the case of BPSK corresponds to β = 90 deg. Although a
Costas loop operates with a less efficient performance (e.g., larger mean-squared
phase-tracking error) than a PLL, it offers the advantage of not requiring a dis-
crete carrier to lock onto, and thus all of the transmitted power can be used for
the purpose of data detection.

Given that either of the transmission modes discussed above is possible, in
the case of autonomous receiver operation it is essential to have a means of es-
timating the modulation index or, equivalently, the ratio of transmitted carrier
to data power. In this chapter, in Section 3.1 we first pursue the maximum-
likelihood (ML) estimation approach to estimating modulation index along with
appropriate approximation of the nonlinearities that result to allow for practi-
cal implementations at low and high signal-to-noise ratio (SNR) scenarios. In
Section 3.2, we consider modulation index estimation for the case where carrier
synchronization has not yet been established, i.e., the carrier phase is random.
Here the ML estimation problem is too difficult to handle analytically and so we
propose an ad hoc scheme instead. Finally, in Section 3.3, we describe how this
scheme may be applied when the modulation type, symbol timing, and data rate
are also unknown.

3.1 Coherent Estimation

3.1.1 BPSK

We begin by considering BPSK modulation where the received signal is given
in complex baseband by Eqs. (1-3) and (1-6), or in passband by

r (t) =
√

2Pt sin

(
ωct + β

∞∑
n=−∞

cnp (t − nT )

)
+ n (t)

=
√

2Pt cos2 β sinωct +
√

2Pt sin2 β

∞∑
n=−∞

cnp (t − nT ) cos ωct + n (t)

=
√

2Pc sin ωct +
√

2Pd

∞∑
n=−∞

cnp (t − nT ) cos ωct + n (t) (3 1)

where, in addition to the aforementioned parameter definitions, {cn} is a binary
sequence, which for our purposes may be treated as independent, identically
distributed (iid) data taking on values ±1 with equal probability; p (t) is the
pulse shape, also taking on values ±1; ωc is the carrier frequency in rad/s;
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1/T is the data (symbol) rate; and n (t) is a bandpass additive white Gaussian
noise (AWGN) source with two-sided power spectral density N0/2 W/Hz. Based
on the above AWGN model, then for an observation of K data intervals, the
conditional probability of the received signal given the data and the modulation
index is given by

p
(
r(t)|{cn}, β

)
=

1√
πN0

exp

(
− 1

N0

∫ KT

0

[
r(t) −

√
2Pc sinωct

−
√

2Pd

∞∑
n=−∞

cnp(t − nT ) cos ωct

]2

dt

⎞
⎠

= C exp

(
2
√

2Pc

N0

∫ KT

0

r(t) sinωct dt

)

× exp

(
2
√

2Pd

N0

∫ KT

0

r(t)
∞∑

n=−∞
cnp(t − nT ) cos ωct dt

)

(3 2)

where C is a constant that has no bearing on the modulation index estimation
to be performed. With some additional manipulation, Eq. (3-2) can be put in
the form

p
(
r(t)|{cn}, β

)
= C exp

(
2
√

2Pt cos β

N0

∫ KT

0

r(t) sinωct dt

)

×
K−1∏
k=1

exp

(
2
√

2Pt sinβ

N0
ck

∫ (k+1)T

kT

r(t)p(t − kT ) cos ωct dt

)

(3 3)

Averaging over the iid data sequence gives what is referred to as the condit-
ional-likelihood function (CLF), namely,

p
(
r(t)|β

)
= C exp

(
2
√

2Pt cos β

N0

∫ KT

0

r(t) sinωct dt

)

×
K−1∏
k=1

cosh

(
2
√

2Pt sinβ

N0

∫ (k+1)T

kT

r(t)p(t − kT ) cos ωct dt

)
(3 4)
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Next, taking the logarithm of Eq. (3-4), we obtain the log-likelihood function
(LLF)

Λ �= ln p
(
r(t)|β

)
=

2
√

2Pt cos β

N0

∫ KT

0

r(t) sinωct dt

+
K−1∑
k=0

ln cosh

(
2
√

2Pt sinβ

N0

∫ (k+1)T

kT

r(t)p(t − kT ) cos ωct dt

)
(3 5)

where we have ignored the additive constant lnC.
Finally, differentiating the LLF with respect to β and equating the result to

zero, we get

d

dθ
ln p

(
r(t)|β

)
= − 2

√
2Pt sinβ

N0

∫ KT

0

r(t) sinωct dt

+
K−1∑
k=0

tanh

(
2
√

2Pt sinβ

N0

∫ (k+1)T

kT

r(t)p(t − kT ) cos ωct dt

)

× 2
√

2Pt cos β

N0

∫ (k+1)T

kT

r(t)p(t − kT ) cos ωct dt = 0 (3 6)

from which the ML estimate of β, namely, β̂, is the solution to the transcendental
equation

∫ KT

0

r(t) sinωct dt =

(
cot β̂

) K−1∑
k=0

tanh

(
2
√

2Pt sin β̂

N0

∫ (k+1)T

kT

r(t)p(t − kT ) cos ωct dt

)

× 2
√

2Pt

N0

∫ (k+1)T

kT

r(t)p(t − kT ) cos ωct dt (3 7)

In order to arrive at an estimation algorithm that is practical to implement,
one must now make suitable approximations to the nonlinearity in Eq. (3-7) cor-
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responding to low and high data detection SNR conditions. For large arguments,
the hyperbolic tangent nonlinearity can be approximated as

tanhx ∼= sgn x (3 8)

Applying this approximation to Eq. (3-7), we arrive at the simple result

cot β̂ =

∫ KT

0
r(t) sinωct dt

K−1∑
k=0

∣∣∣∫ (k+1)T

kT
r(t)p(t − kT ) cos ωct dt

∣∣∣ (3 9)

which for rectangular pulses simplifies further to

cot β̂ =

∫ KT

0
r(t) sinωct dt

K−1∑
k=0

∣∣∣∫ (k+1)T

kT
r(t) cos ωct dt

∣∣∣ (3 10)

The result in Eq. (3-10) is intuitively satisfying since, in the absence of noise, it
becomes

cot β̂ =

∫ KT

0

√
2Pc sin2 ωct dt

K−1∑
k=0

∣∣∣∫ (k+1)T

kT
ck

√
2Pd cos2 ωct dt

∣∣∣ =
√

2Pc(KT/2)√
2Pd(KT/2)

=
√

Pc

Pd
(3 11)

For small arguments, the hyperbolic tangent nonlinearity can be approximated
as

tanhx ∼= x (3 12)

Applying this approximation to Eq. (3-7), we arrive at the simple result

cos β̂ =
N0

∫ KT

0
r(t) sinωct dt

2
√

2Pt

K−1∑
k=0

(∫ (k+1)T

kT
r(t)p(t − kT ) cos ωct dt

)2
(3 13)
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which for rectangular pulses simplifies further to

cos β̂ =
N0

∫ KT

0
r(t) sinωct dt

2
√

2Pt

K−1∑
k=0

(∫ (k+1)T

kT
r(t) cos ωct dt

)2
(3 14)

Unfortunately, there is no guarantee that the right-hand side of Eq. (3-13) will
be less than or equal to unity and thus a solution to this equation may not always
exist.

3.1.2 M-PSK

For M -phase shift keying (M -PSK) modulation (M > 2), the received sig-
nal can be represented in complex baseband using Eqs. (1-3) and (1-7), or in
passband by

r(t) =
√

2Pc sinωct +
√

2Pd cos

(
ωct +

∞∑
n=−∞

θnp(t − nT )

)
+ n(t) (3 15)

where θn = [2qn + (1 + (−1)M/2)/2]π/M is the data modulation for the nth
M -PSK symbol, with independent and uniformly distributed qn ∈ {0, 1, · · · , M−
1}. The CLF analogous to Eq. (3-3) now becomes

p
(
r(t)|{θk}, β

)
= C exp

(
2
√

2Pc

N0

∫ KT

0

r(t) sinωct dt

)

×
K−1∏
k=0

exp

(
2
√

2Pd

N0

∫ (k+1)T

kT

r(t) cos
(
ωct + θkp(t − kT )

)
dt

)

(3 16)

Once again averaging over the data symbols, then because of the symmetry of
the constellation around the circle, i.e., for each phase value there is one that is
π radians away from it, we obtain
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p
(
r(t)|, β

)
= C exp

(
2
√

2Pt cos β

N0

∫ KT

0

r(t) sinωct dt

)

×
K−1∏
k=0

2
M

(M/2)−1∑
q=0

cosh
[
2
√

2Pt sinβ

N0

×
∫ (k+1)T

kT

r(t) cos
(

ωct +
(2q + 1)π

M
p(t − kT )

)
dt

]
(3 17)

where we have artificially introduced the modulation index β to have the same
meaning as in the BPSK case. Once again taking the logarithm of Eq. (3-17),
we obtain the LLF

Λ �= ln p
(
r(t)|β

)
=

2
√

2Pt cos β

N0

∫ KT

0

r(t) sinωct dt +
K−1∑
k=0

ln
2
M

×
(M/2)−1∑

q=0

cosh

(
2
√

2Pt sinβ

N0

∫ (k+1)T

kT

r(t) cos
(

ωct +
(2q + 1)π

M
p(t − kT )

)
dt

)

(3 18)

Finally, differentiating Eq. (3-18) with respect to β and equating the result to
zero results in the transcendental equation

∫ KT

0

r(t) sinωct dt =

(
cot β̂

) K−1∑
k=0

(M/2)−1∑
q=0

xk(q) sinh

(
2
√

2Pt sin β̂

N0
xk(q)

)
(M/2)−1∑

q=0
cosh

(
2
√

2Pt sin β̂

N0
xk(q)

)

xk(q) �=
∫ (k+1)T

kT

r(t) cos
(

ωct +
(2q + 1)π

M
p(t − kT )

)
dt

(3 19)

whose solution is the ML estimate of the modulation index. As for the BPSK
case, to get an implementable estimator we must invoke suitable approximations
to the nonlinearities in Eq. (3-19).
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For large arguments, the hyperbolic sine and cosine nonlinearities can be
approximated as

sinhx ∼= 1
2

exp (|x|) sgn x

cosh x ∼= 1
2

exp (|x|)

(3 20)

from which we obtain

∫ KT

0

r(t) sinωct dt =
(
cot β̂

) K−1∑
k=0

(M/2)−1∑
q=0

|xk(q)| exp

(
2
√

2Pt sin β̂

N0
|xk(q)|

)
(M/2)−1∑

q=0
exp

(
2
√

2Pt sin β̂

N0
|xk(q)|

)

(3 21)

Noting further that for large SNR the summations in Eq. (3-21) are dominated
by their largest term, we can make the further simplification

(M/2)−1∑
q=0

|xk(q)| exp

(
2
√

2Pt sin β̂

N0
|xk(q)|

)
∼=

|xk(q)|max exp

(
2
√

2Pt sin β̂

N0
|xk(q)|max

)
(3 22)

(M/2)−1∑
q=0

exp

(
2
√

2Pt sin β̂

N0
|xk(q)|

)
∼= exp

(
2
√

2Pt sin β̂

N0
|xk(q)|max

)
(3 23)

where

|xk (q)|max

�= max
q

|xk (q)| (3 24)

Finally, applying Eq. (3-22) to Eq. (3-21) gives the desired simplified solution
for the ML estimate of modulation index for M -PSK, namely,
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cot β̂ =

∫ KT

0
r(t) sinωct dt

K−1∑
k=0

|xk(q)|max

(3 25)

=

∫ KT

0
r(t) sinωct dt

K−1∑
k=0

max
q

∣∣∣∣∫ (k+1)T

kT
r(t) cos

(
ωct +

(2q + 1)π
M

p(t − kT )
)

dt

∣∣∣∣
(3 26)

which for rectangular pulses simplifies further to

cot β̂ =

∫ KT

0
r (t) sinωct dt

K−1∑
k=0

|xk (q)|max

=

∫ KT

0
r (t) sinωct dt

K−1∑
k=0

max
q

∣∣∣∣∫ (k+1)T

kT
r (t) cos

(
ωct +

(2q + 1)π
M

)
dt

∣∣∣∣
(3 27)

For low SNR, we can apply the small argument approximations

sinh ∼= x

cosh x ∼= 1
(3 28)

Note that these approximations are consistent with the approximation of the
hyperbolic tangent nonlinearity given in Eq. (3-12). Thus, applying the approx-
imations in Eq. (3-28) to Eq. (3-19) results in the ML estimate

cos β̂

=
N0

∫ KT

0
r (t) sinωct dt

2
√

2Pt

K−1∑
k=0

2
M

(M/2)−1∑
q=0

x2
k (q)

=
MN0

∫ KT

0
r (t) sinωct dt

4
√

2Pt

K−1∑
k=0

(M/2)−1∑
q=0

(∫ (k+1)T

kT
r (t) cos

(
ωct +

(2q + 1)π
M

p (t − kT )
)

dt

)2

(3 29)

which has the same difficulty as that in the discussion following Eq. (3-14).
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3.2 Noncoherent Estimation
In the noncoherent case, the modulation index estimate must be formed

in the absence of carrier synchronization. For simplicity, we again begin the
investigation for BPSK modulation. The received signal is again modeled as in
Eq. (3-1) with the addition of an unknown (assumed to be uniformly distributed)
carrier phase to both the discrete and data-modulated carriers. Thus, analogous
to Eq. (3-4), we now have the CLF

p
(
r(t)|β, θc

)
= C exp

(
2
√

2Pt cos β

N0

∫ KT

0

r (t) sin (ωct + θc) dt

)

×
K−1∏
k=1

cosh

(
2
√

2Pt sinβ

N0

∫ (k+1)T

kT

r (t) p (t − kT ) cos (ωct + θc) dt

)
(3 30)

The next step would be to average over the uniformly distributed carrier
phase, which is an analytically intractable task. Even after approximating the
nonlinearities as was done in the coherent case, performing this average is still
analytically intractable. Thus, we abandon our search for the ML estimate and
instead propose the following ad hoc approach.

Consider demodulating the received signal of Eq. (3-1), including now the
unknown carrier phase θc, with the in-phase (I) and quadrature (Q) carriers
(arbitrarily assumed to have zero phase relative to the unknown carrier phase of
the received signal)

rc (t) =
√

2 cos ωct

rs (t) =
√

2 sinωct

(3 31)

Then, the outputs of these demodulations become

yc (t) = r (t) rc (t) =
√

Pc sin θc +
√

Pd

∞∑
n=−∞

cnp (t − nT ) cos θc + nc (t)

ys (t) = r (t) rs (t) =
√

Pc cos θc −
√

Pd

∞∑
n=−∞

cnp (t − nT ) sin θc + ns (t)

(3 32)

where
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nc (t) = n (t)
(√

2 cos ωct
)

ns (t) = n (t)
(√

2 sinωct
) (3 33)

Integrating yc (t) and ys (t) over K symbol durations and summing the squares
of these integrations gives

(∫ KT

0

yc (t) dt)2 +

(∫ KT

0

ys (t) dt

)2

= (KT )2 Pt cos2 β

+ (KT )2Pt sin2 β

(
1
K

K−1∑
k=0

1
T

∫ (k+1)T

kT

ckp (t − kT ) dt

)2

+ N1 (t) (3 34)

where N1 (t) is composed of S × N and N × N terms. For sufficiently large K,
the data-dependent term becomes vanishingly small, in which case Eq. (3-34)
simplifies to

(∫ KT

0

yc (t) dt

)2

+

(∫ KT

0

ys (t) dt

)2

= (KT )2 Pt cos2 β + N1 (t) (3 35)

Next, noting that the first terms in Eq. (3-32) are constant with time, form the
difference signals

yc (t) − yc (t − T ) =
√

Pt sinβ

∞∑
n=−∞

(cn − cn−1) p (t − nT ) cos θc

+ nc (t) − nc (t − T )

ys (t) − ys (t − T ) = −
√

Pt sinβ

∞∑
n=−∞

(cn − cn−1) p (t − nT ) sin θc

+ ns (t) − ns (t − T )

(3 36)

Now first squaring these signals and then integrating them over K symbol dura-
tions, the sum of these integrations becomes
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∫ KT

0

(
yc(t)−yc(t − T )

)2
dt +

∫ KT

0

(
ys(t) − ys(t − T )

)2
dt =

Pt sin2 β

K−1∑
k=0

∫ (k+1)T

kT

(2 − 2ckck−1) p2 (t − kT ) dt + N2 (t) (3 37)

where again N2(t) is composed of S × N and N × N terms. Once again, for
sufficiently large K, the data-dependent term becomes vanishingly small and,
assuming for convenience rectangular pulses, Eq. (3-37) simplifies to

∫ KT

0

(
yc(t) − yc(t − T )

)2
dt +

∫ KT

0

(
ys(t) − ys(t − T )

)2
dt =

2KTPt sin2 β + N2(t) (3 38)

Finally then, from observation of Eqs. (3-35) and (3-38), it is reasonable to
propose the ad hoc noncoherent estimator of modulation index

cot β̂ =

√√√√√√ 2
[(∫ KT

0
yc(t)dt

)2

+
(∫ KT

0
ys(t)dt

)2
]

KT
[∫ KT

0

(
yc(t) − yc(t − T )

)2
dt +

∫ KT

0

(
ys(t) − ys(t − T )

)2
dt

]
(3 39)

Clearly, in the absence of noise this estimator produces the true value of the
modulation index. Also, it has an advantage over Eqs. (3-14) and (3-29) in that
the SNR need not be known to compute it. The architecture given by Eq. (3-39)
is shown in Fig. 3-1.

3.3 Estimation in the Absence of Knowledge of the
Modulation, Data Rate, Symbol Timing, and SNR

The modulation index estimators in Section 3.1 do not require an SNR esti-
mate, and the ones in Section 3.2 require neither an SNR estimate nor a carrier
phase estimate. However, they both require explicit knowledge of the phase-shift
keying (PSK) modulation size, data rate, and symbol timing, as seen by the use
(either explicitly or implicitly) of the parameters M and T and precise integra-
tion limits in Eqs. (3-10), (3-14), (3-27), (3-29), and (3-39).

In this section, we extend the ad hoc modulation index estimator of
Eq. (3-39) for BPSK signals to a general M -PSK modulation where M is un-
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known, and where the symbol rate (1/T ) and fractional symbol timing (ε) are
also unknown. We assume that T takes on values in a finite set T , and we define

T ∗ �= max
T

{T ∈ T } (3 40)

The received signal can be represented as

r (t) =
√

2Pc sin(ωct + θc)

+
√

2Pd cos

(
ωct + θc +

∞∑
n=−∞

θnp (t − nT − εT )

)
+ n (t) (3 41)

which is the same as Eq. (3-15) except that we have introduced unknown pa-
rameters θc and ε, and we now allow for the possibility of BPSK as well, so that
θn = [2qn + (1 + (−1)M/2)/2]π/M is the data modulation for the nth M -PSK
symbol, with independent and uniformly distributed qn ∈ {0, 1, · · · , M − 1}.

After mixing with in-phase and quadrature signals [see Eq. (3-31)], we have

yc(t) = r (t) rc (t) =
√

Pc sin θc +
√

Pd cos

[
θc +

∞∑
n=−∞

θnp(t − nT − εT )

]

+ nc(t)
(3 42)

ys (t) = r (t) rs (t) =
√

Pc cos θc −
√

Pd sin

[
θc +

∞∑
n=−∞

θnp(t − nT − εT )

]

+ ns(t)

where nc(t) and ns(t) are described by Eq. (3-33), as before.
Following the same strategy for ad hoc estimation as in Section 3.2, we inte-

grate over a long duration. In this case, the integration limits are not necessarily
aligned to the symbols, and T ∗ is used in place of the (unknown) T , to obtain

1
KT ∗

∫ KT∗

0

yc(t)dt =
√

Pc sin θc

+
1

KT ∗

∫ KT∗

0

[√
Pd cos

(
θc +

∞∑
n=−∞

θnp(t − nT − εT )

)
+ nc(t)

]
dt (3 43)

and
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1
KT ∗

∫ KT∗

0

ys(t)dt =
√

Pc cos θc

+
1

KT ∗

∫ KT∗

0

[√
Pd sin

(
θc +

∞∑
n=−∞

θnp(t − nT − εT )

)
+ ns(t)

]
dt (3 44)

Using the facts that (1) M -PSK, for all M even, has the property that if θn is
an allowable modulation angle, θn +π is as well, (2) each point in the signal con-
stellation is equally likely, (3) both NRZ and Manchester satisfy p(t) ∈ {−1, 1}
for all t, and (4) cos(α) = − cos(α+π) and sin(α) = − sin(α+π), it follows that
the integrals in Eqs. (3-43) and (3-44) each approach zero as K → ∞. Thus, for
sufficiently large K, we may write

(
1

KT ∗

∫ KT∗

0

yc(t)dt

)2

∼= Pc sin2 θc (3 45)

(
1

KT ∗

∫ KT∗

0

ys(t)dt

)2

∼= Pc cos2 θc (3 46)

or

(
1

KT ∗

∫ KT∗

0

yc(t)dt

)2

+

(
1

KT ∗

∫ KT∗

0

ys(t)dt

)2

∼= Pc (3 47)

It remains to obtain an estimate of Pd. We may form the difference

yc(t) − yc(t − T ∗) =
√

Pd

[
cos

(
θc +

∞∑
n=−∞

θnp(t − nT − εT )

)

− cos

(
θc +

∞∑
n=−∞

θnp(t − T ∗ − nT − εT )

)]

+ nc(t) − nc(t − T ∗)

=
√

Pd

{
−2 sin

[
1
2

(
2θc +

∞∑
n=−∞

(θn + θn+l)p(t − nT − εT )

)]

× sin

[
1
2

∞∑
n=−∞

(θn − θn+l)p(t − nT − εT )

]}

+ nc(t) − nc(t − T ∗)
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where l
�= T ∗/T . Although l is unknown, since T is unknown, we will see that

this parameter will drop out of the final metric. Forming a similar expression
for the difference of ys(t) terms, squaring, and ignoring noise terms, we obtain

(yc(t) − yc(t − T ∗))2 ∼= 4Pd

{
sin2

[
1
2

(
2θc +

∞∑
n=−∞

(θn + θn+l)p(t − nT − εT )

)]

× sin2

[
1
2

( ∞∑
n=−∞

(θn − θn+l)p(t − nT − εT )

)]}

(ys(t) − ys(t − T ∗))2 ∼= 4Pd

{
cos2

[
1
2

(
2θc +

∞∑
n=−∞

(θn + θn+l)p(t − nT − εT )

)]

× sin2

[
1
2

( ∞∑
n=−∞

(θn − θn+l)p(t − nT − εT )

)]}

Thus,

1
2KT ∗

∫ KT∗

0

[(
yc(t) − yc(t − T ∗)

)2 +
(
ys(t) − ys(t − T ∗)

)2
]
dt ∼=

2Pd

KT ∗

∫ KT∗

0

sin2

[
1
2
(
(θn − θn+l)p(t − nT − εT )

)]
dt ∼= Pd (3 48)

where we have used sin2 x = (1/2)(1 − 2 cos x) and the fact that the integration
of the cosine term approaches zero for sufficiently large K.

Thus, an ad hoc estimator of the modulation index β = cot−1
√

Pc/Pd is
given by

β̂ = cot−1

⎡
⎢⎢⎢⎣

√√√√√√ 2
[(∫ KT∗

0
yc(t)dt

)2

+
(∫ KT∗

0
ys(t)dt

)2
]

KT ∗ ∫ KT∗

0

[(
yc(t) − yc(t − T ∗)

)2 +
(
ys(t) − ys(t − T ∗)

)2
]
dt

⎤
⎥⎥⎥⎦

(3 49)
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which is identical to Eq. (3-39) when T is replaced by T ∗. Thus, the same
architecture shown in Fig. 3-1 may be used when modulation type, data rate,
symbol timing, and SNR are unknown, by replacing T with T ∗.

3.4 Noncoherent Estimation in the Absence of
Carrier Frequency Knowledge

Consider now demodulating the received signal of Eq. (3-1) with I and Q
references as in Eq. (3-31) with ωc replaced by ωc − ∆ω, where ∆ω denotes the
uncertainty in the knowledge of the true carrier frequency ωc. Then, the outputs
of these demodulations are given by Eq. (3-32) with θc replaced by ∆ωt + θc.
Squaring yc (t) and ys (t) and summing these squares gives

y2
c (t) + y2

s (t) =

Pc + Pd

⎛
⎜⎝ ∞∑

n=−∞
p2 (t − nT ) +

∞∑
n=−∞

∞∑
m=−∞
n �=m

anamp (t − nT ) p (t − mT )

⎞
⎟⎠ + N1 (t)

(3 50)

where as before N1 (t) is composed of S ×N and N ×N terms. Integrating the
sum in Eq. (3-50) over K symbol durations and recognizing that for sufficiently
large K the time average over the data-dependent term can be replaced by
the statistical average, which for random data equates to zero, we obtain the
simplified result

∫ KT

0

[
y2

c (t) + y2
s (t)

]
dt = KT (Pc + Pd)+

NA︷ ︸︸ ︷∫ KT

0

N1 (t) dt = KTPt +NA (3 51)

Next, form the complex signal

ỹ (t) = ys (t) + jyc (t)

=

[√
Pc + j

√
Pd

∞∑
n=−∞

anp (t − nT )

]
ej(∆ωt+θc) + ns (t) + jnc (t) (3 52)
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and multiply it by its complex conjugate delayed by one symbol ỹ∗ (t − T ), which
gives

ỹ (t) ỹ∗ (t − T ) =

[
Pc + Pd

∞∑
n=−∞

anan−1p (t − nT )

]
ej∆ωT

+ j
√

PcPd

∞∑
n=−∞

(an − an−1) p (t − nT )ej∆ωT + N2 (t) (3 53)

where again N2 (t) is composed of S × N and N × N terms. Now integrate this
complex product over K symbol intervals, once again ignoring the averages over
the data-dependent terms, valid for large K. Thus,

∫ KT

0

ỹ (t) ỹ∗ (t − T ) dt = KTPce
j∆ωT +

NB(t)︷ ︸︸ ︷∫ KT

0

N2 (t) dt (3 54)

Finally, from observation of Eqs. (3-51) and (3-54), it is reasonable to propose
the ad hoc noncoherent estimator of modulation angle

cos β =

√√√√√
∣∣∣∫ KT

0
ỹ (t) ỹ∗ (t − T ) dt

∣∣∣∫ KT

0
|ỹ (t)|2 dt

(3 55)


